BMP-7 represses albumin-induced chemokine synthesis in kidney tubular epithelial cells through destabilization of NF-κB-inducing kinase.

نویسندگان

  • Ai Ing Lim
  • Loretta Y Y Chan
  • Sydney C W Tang
  • Wai Han Yiu
  • Ruixi Li
  • Kar Neng Lai
  • Joseph C K Leung
چکیده

Protein overload activates proximal tubule epithelial cells (PTECs) to release chemokines. Bone morphogenetic protein-7 (BMP-7) reduces infiltrating cells and tissue damage in acute and chronic renal injuries. The present study examines the inhibitory effect and related molecular mechanism of BMP-7 on chemokine and adhesion molecule synthesis by PTECs activated with human serum albumin (HSA). The expression profiles of chemokines and adhesion molecules in cultured human PTECs were screened by PCR array. Expression of CXCL1, CXCL2 and vascular cell adhesion protein 1 (VCAM-1) by PTECs was significantly upregulated by HSA and reduced by BMP-7. HSA activated both the canonical and noncanonical nuclear factor (NF)-κB pathways in PTECs, as indicated by the increased nuclear translocation of NF-κB p50 and p52 subunits. The nuclear translocation of NF-κB p52 was completely abrogated by BMP-7, whereas NF-κB p50 activation was only partially repressed. BMP-7 increased the expression of cellular inhibitor of apoptosis 1 (cIAP1), tumor necrosis factor receptor-associated factor (TRAF)2 and TRAF3, but not of NF-κB-inducing kinase (NIK) that was significantly upregulated by HSA. Silencing NIK recapitulated the partial inhibitory effect on HSA-induced chemokine synthesis by BMP-7. Complete abolishment of the chemokine synthesis was only achieved by including additional blockade of the NF-κB p65 translocation on top of NIK silencing. Our data suggest that BMP-7 represses the NIK-dependent chemokine synthesis in PTECs activated with HSA through blocking the noncanonical NF-κB pathway and partially interfering with the canonical NF-κB pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NF-κB-Inducing Kinase Increases Renal Tubule Epithelial Inflammation Associated with Diabetes

The impact of increased NF-κB-inducing kinase (NIK), a key component of the NF-κB activation pathways, on diabetes-induced renal inflammation remains unknown. We overexpressed NIK wild type (NIKwt) or kinase-dead dominant negative mutants (NIKdn) in HK-2 cells and demonstrated that RelB and p52, but not RelA, abundance and DNA binding increased in nuclei of NIKwt but not NIKdn overexpressed cel...

متن کامل

A Polymeric Nanomedicine Diminishes Inflammatory Events in Renal Tubular Cells

The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models.In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-κB ...

متن کامل

Tubular epithelial NF-{kappa}B activity regulates ischemic AKI

NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of acute kidney injury (AKI). The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue-parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induce...

متن کامل

4-Hydroxy-2-hexenal-induced apoptosis in human renal proximal tubular epithelial cells.

BACKGROUND The aldehyde products of lipid peroxidation such as 4-hydroxy-2-hexenal (HHE) might be responsible for the pathogenesis of kidney injury. The present study was aimed to investigate the effects of HHE on renal tubular epithelial cells and its signaling mechanisms. METHODS Human proximal tubular epithelial (HK-2) cells were treated with 10 μM of HHE. Cell viability was examined using...

متن کامل

Hypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line

Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions                        in vitro. MTT assay was used to measure the cell proliferation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Immunology and cell biology

دوره 92 5  شماره 

صفحات  -

تاریخ انتشار 2014